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Abstract. We consider the problem min {f(x): x E G, T(x) gint D}, where f is a lower semicontinu- 
ous function, G a compact, nonempty set in R”, D a closed convex set in RZ with nonempty interior 
and T a continuous mapping from R” to I@. The constraint T(x) gint D is a reverse convex constraint, 
so the feasible domain may be disconnected even when f, T are afline and G is a polytope. We show 
that this problem can be reduced to a quasiconcave minimization problem over a compact convex set 
in R? and hence can be solved effectively provided f, T are convex and G is convex or discrete. In 
particular we discuss a reverse convex constraint of the form (c, x) (d, x) < 1. We also compare the 
approach in this paper with the parametric approach. 
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1. Introduction 

In recent years, convex programs with an additional reverse convex constraint 
have attracted attention of several researchers (see, e.g., HiIIestad & Jacobsen 
[3-41, Singer [ 141, Tuy 1211, Tuy & Thuong [22-231, Thach [ 161, Muu [ 111, Thoai 
[19], Fiilop [2]). A g eneral form of this problem is the following 

minimize f(x) (1.1) 

s.t. x E G (1.2) 

and xgint A (1.3) 

where f(x) is a convex function, G and A are convex sets. The difficulty of 
problem (l.l)-(1.3) comes from constraint (1.3) which is called a reverse currve~ 
constraint. Without (1.3) the problem is an ordinary convex program. Problem 
(1 .l)-( 1.3) belongs to a class of hard optimization problems. Indeed, if f is a 
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constant function, A the unit ball in R” and G a polytope defined by a finite 
number of linear inequalities then problem (l.l)-(1.3) becomes a set contain- 
ment problem which has been shown to be NP-complete (see, e.g., Freund [l]). 
Tuy [21] reduced this problem under a stability condition to a sequence of linearly 
constrained concave minimization problems in R”. Up to now the size of reverse 
convex programs which can be solved to optimality is very limited. 

In this paper we investigate a special class of reverse convex programs where G 
is an arbitrary compact, nonempty set in IX” and the reverse convex constraint has 
the form 

T(x) = (T,(x), T,(x)) gint D (1.4) 

where D is a closed convex set in R2 and T = (T, , T,) a continuous mapping from 
R” to I@. Our purpose is to show that if we have available an efficient algorithm 
to solve the problem 

min{ f(x) : x E G, t, T,(x) + t2T2(x) 3 a} (W 

then we have an efficient algorithm to solve problem (l..l), (1.2) and (1.4) as 
well. In many cases problem (1.5) is easy to solve, for example, if T,, T2 are 
linear functions, f a convex function and G a convex set. This case includes the 
problem 

min{f(x) : x E G, (c, X) . (d, X) 6 1} (l-6) 

where f is convex, G is a convex set in I%“, , and c and d are vectors in R:. Indeed, 
by setting T,(x) = ( c, x), T2(x) = (d, x) and 

D = {u = (q, u2) E rw: : u; * u2 a l} 

we can convert problem (1.6) into problem (1.1)) (1.2) and (1.4). The product of 
two linear functions appears in some applications as VLSI chip design, transporta- 
tion or micro economics. Optimization problems dealing with it have been 
considered by several authors (see, e.g., Pardalos [13], Konno et al. [g-lo], 
Suzuki et al. [15]). We shall deal with this particular problem in Section 4. 
Another example where f, Tl, T2 are linear functions and G = (0, l}” leads to the 
O-l knapsack problem and can be solved by a pseudopolynomial algorithm (see, 
e.g., WI). 

In order to solve problem (1. l), (1.2) and (1.4) we reduce it to a quasiconcave 
minimization problem over a closed convex set in R’. By using a cutting plane 
approach for the reduced problem we obtain an effective algorithm for the 
problem under investigation. 

The paper consists of 5 sections. In Section 2 we reduce problem (l-l), (1.2) 
and (1.4) to a quasiconcave minimization problem in R”. In Section 3 we present 
a solution method. In Section 4 we specialize the reverse convex constraint to a 
product of two linear functions and illustrate the developed method by a 
numerical example. Finally, we draw some conclusions in Section 5. 
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2. Reduction to a Quasiconcave Minimization Problem in the Plane 

Let us assume that G is a compact, nonempty set in R”, D C R? is a closed convex 
set with intDZ0, f: G -+ R’ is a lower semicontinuous (1s~) function and T a 
continuous mapping from E-2” to W’. The problem under consideration has the 
form 

min{ f(x) : x E G, T(x) $int D} . P> 

We assume that (P) has at least one feasible solution. Let w be a minimizer off 
on G. If T(w)jZ’int D, then w solves (P) and we terminate. Therefore we restrict 
our attention in the following to the case T(w) E int D. 

Let V : = D - T(w). Since T(w) E int D, V contains 0 in its interior. Denote by 
E the polar set of V in F!‘: 

E={tER’: (t,v)clVuEV}. (2.1) 

V is a neighborhood of 0, therefore the polar E is a nonempty compact, convex 
set. We define h : R2 4 R U { +w} by 

h(t):=inf{f(x):xEG,(t,T(x)-T(w))al}. (2.2) 

Let O~hsl. Then from 

{x: (At’ + (1 - A)?, T(x) - T(w)) 2 l} 

4{x:(t’,T(x)-T(w))~l}U{x:(t2,T(x)-T(w))sl} 

follows 

h( At1 + (1 - A)?) 3 min{h(tl), h(P)} . (2.3) 

Hence h is quasiconcave. Moreover h is lsc from the compactness of G, the 
continuity of T and the lower semi-continuity off. 

We are now going to show that the original problem (P) can be reduced to 
minimizing h over the polar set E. 

We have 

T(x) @int D a T(x) - T(w) gint V , 

T(x)-T(w)$intV~(3tEE:(t,T(x)-T(w))sl). 

Therefore 

(2.4) 

(2.5) 

inf{ f(x) : x E G, T(x) gint D} 

= inf{ f(x) : x E G, T(x) - T(w) @int V} 

=inf{f(x):xEG,tEE,(t,T(x)-T(w))al} 

=iinLiFf{f(x):xEG,(t,T(x)-T(w))al} 

= inf{h(t): t E E} . 

by (2.4) 

by (2.5) 
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Therefore we consider 

min{ h(t) : t E E} e> 

and for every t E R* the problem 

itf{f(x):xEG,(t,T(x)-T(w))>1). w 

Thus h(t) = inf(L,). S ince h is lsc and E in compact, @) has an optimal solution. 
Thus we have shown 

THEOREM 2.1. (i) Problem (@) has an optimal solution; 
(ii) inf(P) = inf(F); 
(iii) If t* is an optimal solution of (i) and x* solves (LT), then x* solves (P). 

3. A Solution Method 

Let us first introduce concepts of approximate solutions. Let {D,, .s Z= 0} be a 
family of subsets in R* such that D, = int D and, for c > 0, D, is a closed subset of 
int 0. The constraint T(x)$D, is then a relaxation of T(X) $Z’int D. 

DEFINITION 3.1. (i) x is called an q-optimal solution (7 3 0) of (L,) iff x is 
feasible for (L,) and f(x) == inf(L,) + q. 
(ii) x is called (7, &)-optimal iff x E G, T(x) go, and f(x) 6 inf(P) + 7. 

Now we present an algorithm for finding an (7, &)-optimal solution of (P), which 
essentially is the outer approximation method specialized for (6). 

ALGORITHM 3.1. 

Initialization. 
Let W,, C R2 be a triangle containing the compact convex set E. Let U-, := 0. Set 
k := 0. Enter iteration k. 

Iteration k. 
Let U, := vertex set of Wk. For all t E U,\U,-, determine x*(t) as an q-optimal 
solution of (L,). [If (L,) is not feasible, then set fictitiously f(x*(t)) :=+a]. 

Step k-u. 
Let tk E argmin { f(x*(t)): t E U,}, and xk := x*(tk). Go to Step k. b. 

Step k.b. 
If T(xk) $ZD,, then terminate: xk is (7, &)-optimal -(see the comment below). 
Otherwise, go to Step k.c. 

Step k.c. 

Let JYk+, : = W, fl {t : Zk(t) 6 0)) where 1, is an aftine function such that Zk(tk) > 0 
and Zk(t) < 0 for all t E E. Go to iteration k + 1. 
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Comments 
Since x*(t) is an q-optimal solution of (L,) one has h(t) ~f(x*(t)) G h(t) + 7. 

Since xk is feasible for (L,k) one has 

xk E G and ( tk, 7’(xk) - T(w)) 3 1. 

Since h is quasiconcave one has 

min(h(t) : t E W,} = min{h(t) : t E U,} . 

Since E $ W, for any k, one obtains 

min(P) = min{h(t) : t E E} 2 min{h(t) : t E W,} = min{h(t) : t E U,} 

2 min{ f@*(t)) - 71: t E U,} = f(~“) - 71 . (3-l) 

If termination occurs in iteration k, the solution xk is (71, &)-optimal, since 
T(x~) @D, and f(x”) < min(P) + 71 from (3.1). 

If no termination occurs in iteration k, then tk #E. Suppose the contrary 
tk E E. Together with ( tk, A - T(w)) > 1 this implies T(xk) - T(w)$int V 
and therefore T(xk)$DD, and termination would occur. Thus, if no termination 
occurs in iteration k, then there exists an affine function I, which cuts the vertex tk 
from E. Indeed, from tk e E and from the definition of E follows SUP,~, ( tk, u) > 
1. Hence there exists a vk E V such that ( tk, u”) > 1. Now the affine function 
Zk(t) := ( bk, t) - 1 satisfies Zk(tk) > 0, while Zk(t) 6 0 for all t E E. Thus the 
function I, cuts the vertex tk from E. 

W, is a triangle. Since kk is obtained from W,-, by adding a linear constraint, 
U, can easily be computed by using the information of U,-, . Furthermore, for 
k > 0, U,\ U,-, contains at most two points. So, in each iteration k we have to 
solve at most two subproblems (L,). 

We discuss now the finiteness of the algorithm. 

DEFINITION 3.2. We say that the sequence of cutting functions I, used in 
Algorithm 3.1 is convergent, if every cluster point of the sequence { tk} belongs to 
E. 

We can find sufficient conditions for the convergence of the sequence of cutting 
functions in, e.g., Kleibohm [8] and Tuy [20). 

THEOREM 3.1. If the sequence of cutting functions I, is convergent, then 
Algorithm 3.1 terminates after finitely many iterations for every E > 0. 

Proof. Assume that no termination occurs. Since { tk} C_ W,, and W, is compact, 
there exists a cluster point t* of { tk} . Since {x”} c G, G compact, there exist 
subsequences tkv+ t*, xkV+x* E G. It follows that (t*, T(x*) - 7’(w)) 2 1. The 
convergence of the cutting functions yields t* E E. From (2.4) and (2.5) follows 
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then T(x*) eint D, hence T(x*) e D, . Since D, is closed, this implies T(&) g D, 
for all k, sufficiently large. But this contradicts non-termination. 0 

REMARK 3.1 
The same algorithm can be used to solve problems of the form 

min{ f(x) : x E G, t E E, I,@, t) 2 0} 

where $(x, .) is quasiconvex and E is a compact convex set in I@. 
In this case the function 

(3-Z) 

h(t) : = inf{ f(x) : x E G, (cl(x, t) 2 0} 

is quasiconcave. The problems 

inf{ f(x) : x E G, $(x, t) 2 0} 

are convex, if f, G are convex and $(., t) is quasiconcave. 

4. Reverse Convex Programs Dealing with the Product of Two Linear 
Functions 

In this section we deal with the important special case of (P) where the reverse 
convex constraint can be written in the form 

(c,x)+&x)~l (4.1) 

for two linearly independent vectors c and d E R:. In this case 

(T,(x), T*(x)) = ((c, x), (d, x)), and D = {u E R:: u1 * u2 2 l} . 

In principle, this problem can be written in the form: 

minimize F(s), s.t. O< 5 <or,, 

with 

F((5)=inf{f(x):xEG,(c,x)<~,(d,x)S1/5). (4.2) 

The difficulty of this approach however consists in the complicated behavior of 
the function F implicity defined via (4.2). For example, the function F may have 
an infinite number of local optima (see the Example 4.1). Therefore we specialize 
the method developed in the previous sections to this situation. 

In the following we deal with 

min f(x) s.t. x E G and (c, x) * (d, x) c 1 (4.3) 

where we assume that f is lower semicontinuous and G is a compact, nonempty 
set in RT. Let w be a solution of min {f(x): x E G}. If w satisfies constraint (4.1) 
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then w solves problem (4.3), too. In this case the reverse convex constraint is not 
essential. So, we restrict our attention to a case where (c, w) * (d, w) > 1. We 
can explicitly determine the polar set E by the following lemma. 

LEMMA 4.1. The polar set E of V has the form 

E = {(tl, t,): -t, . ( c, w) - t, - (d, w) - 2(t, * t,y c 1, t, 6 0, t, 6 O} . 
(4.4) 

From the lemma we can easily construct a triangle W, > E such that 

W&R” (4.5) 

and a cutting function separating a given point outside E from E. Set for E > 0 

DE=(U=(U1)U~):U~)U~51+E,U~~0,U~~0}. 

It is obvious that D, is closed and D, c int D. 
For any n > 0, E > 0 Algorithm 3.1 yields an (7, &)-optimal solution after 

finitely many iterations. 

EXAMPLE 4.1 
Let us illustrate the foregoing ideas by the following problem in IF!?. 

Minimize --x - y, subject to (4.6) 

2 x-1. x + (1.1.2-l - 1)(1.1.2k-l)y>2k-1 Vk=0,1,2,. . . (4.7) 

0.2 =z x 6 2.2,0.4 s y =s 5 (4.8) 

x*ycl. (4.9) 

In this example, G defined by (4.7)-(4.8) is a compact convex set in [wt. For 
each 5 > 0, set 

F(<)=inf{-x-y:(x,y)EG,x<<,y<l/t}. 

Then, the function F has an infinite number of local optima. The set of local 
optima of F in the segment [0.2,2.2] is 

2.2 - 1/(2k-1), k = 0, 1,2, . . . 

But F has only one global minimizer at 5 = 0.2. It can easily be seen that 
tx, Y) = (2.2,5) is a minimizer of (4.6)-(4.8). Therefore, w = (2.2,5) and 

E= {(tl, t,): -2.2. t, -5. t2-2(tlt2)1’2<1, t,sO, t,<O} 

(see Figure 1). 
Now, let us apply Algorithm 3.1 with E = 0, n = 0 to solve (4.6)-(4.9). 

Initialization. 
Let W, be a triangle defined by the intersection of R? and the half space 
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t * 

-0.25 
-0.2 

0 

izo 
-0.5 -0.833 tl 

Fig. 1. 

supporting E at (-l/5.2, -l/5.2). Then, 

U, = {(O,O), (0, -0.25), (-l/1.2,0)} ; 
x*(0,0) = 0, h(O,O) = 03 ; 
x*(0, -0.25) = (2.2, l), h(0, -0.25) = -3.2 ; 
x*(-1/1.2,0) = (1,5), h(-l/1.2,0) = -6. 

Iteration 0. 
Step 0.a. to = (-l/1.2,0). 
Step 0.b. (c, x*(t’)) . (d, x*(t’)) = 5 > 1. 
Step O.C. We choose the cutting line a’t, + /lot2 + y ’ = 0 with (Y’ = -1, /3’ = 0 
and y” = -0.5 (see Figure 1) and get as new vertices: 

lJ,\u, = ((-0.5, -O.l), (-0.5, O)} ; 
x*(-0.5, -0.1) = (0.2,5), /z-0.5, -0.1) = -5.2 
x*(-0.5,0) = (0.2,5), h(-0.5,O) = -5.2 ; 

Iteration 1. 
Step 1.a. t’ = (-0.5,O). 
Step 1.b. (c, x*(tl)) * (d, x*(t’)) = 1: t p s o with the optimal solution (O-2,5). 

5. Discussion 

For the performance of AIgorithm 3.1 we need an available efficient algorithm for 
the subproblem (I,,). In the algorithm we are, in fact, considering subproblems 
with only t E W,. So, an available efficient algorithm for (L,) is required with only 
t E W,. In the case, where D-= {(ul, uz): uluz 3 1, b, 2 0, u2 2 0}, by virtue of 
(4.5) we can construct W, G I&!“_. Therefore we need an efficient algorithm for (L,) 
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with t 6 0. If ,f, ?i, T2 are convex and G is a convex set then’(L,) for t G 0 is an’ 
ordinary convex program. Thus we also obtain an efficient method for the 
problem 

min{ f(x) : x E G, T,(x) - T&v) 6 1) 

where T,, T, are nonnegative-valued convex functions. 
Since h is quasiconcave a minimizer of h on E must be located in at least one 

extreme point of E. Because in the plane the set of extreme points of a closed 
convex body is contained in the boundary curve, let g be the restriction of h to the 
boundary curve C of E. Then problem (P) can be reduced to the problem of 
minimizing g on C. This is another parametric approach for solving (P). As 
mentioned in the introduction and shown in the Example 4.1, the function g may 
have infinitely many local optima on C. 

A duality between Quasiconvex Minimization over the complement of a convex 
set and Quasiconvex Maximization over a convex set has recently been estab- 
lished by one of the authors (see [17,18]). If we consider problem (P) as a primal 
problem then problem (5) can be considered as its dual. Thus in this case we see 
that the dual problem is much easier than the primal. The approach presented in 
this paper could also be extended for cases where the dimension k of D is greater 
than 2. In such cases the dual program is a concave program of more than two 
variables, but it is still simpler than the primal if the dimension of the reverse 
convex constraint is much smaller than n. In that case we can use available 
algorithms for linearly constrained quasiconcave minimization subproblems of k 
dimensions at each iteration (see Horst and Tuy [7]). 

The algorithm presented in Section 3 is an outer approximation. Recently, 
branch and bound methods (see, e.g., Horst [6], Horst and Tuy [7], Tuy and 
Horst ‘[24]) became practicable for Quasiconvex Maximization. We just indicate 
such an approach and leave the detailed development of such an algorithm for (P) 
to a separate work. 
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